Degraded Water for Power Plant Cooling

Workshop on Water Supply Issues
February 8, 2001

Presented by Michael N. DiFilippo, Consultant

Pres 11 CT

Degraded Water Sources

- Contaminated Groundwater
- Brackish Surface Water
- Brackish Groundwater
- Agricultural Return Water
- Reclaimed Municipal Effluent
- Industrial Process Water or Wastewater

Pres 12 CT

Cooling System Chemistry Issues

- Common Minerals calcium, magnesium, alkalinity, sulfate, silica, salinity
- Reclaimed Water Constituents (Title 22) BOD, COD, THM precursors, ammonia, phosphate
- Hazardous Contaminants heavy metals, VOCs, non-VOCs, pesticides
- Other Chemical Constituents perchlorate, nitrate, sulfide, fluoride

4

Table 2-3a

Cooling Tower - Basic Water Quality Parameters

Degraded Water TC

Parameter	Units	Basic Parameters		
Ca	mg/lcacos	900 (max)		
Ca with PO₄ present	mg/lcacos	(Refer to Table 2-1b)		
CaxSO.	(mg/l) ²	500,000		
Mg x SiO 2	mg/lcacos x mg/l sio2	35,000(2) 75,000(3)		
HCO3 + CO3	mg/lcacos	30-50(2) 200-250(3)		
SO.	mg/l	(Note 5)		
SiO ₂	mg/l	150		
Fe (Total)	mg/l	< 0.5 (5)		
Mn	mg/l	<0.5		
Cu	mg/l	<0.1		
Al	mg/l	<1		
S	mg/l	5		
NH	mg/l	<2 (9)		
pН		6.8-7.2(2) 7.8-8.4(3)		
pH with PO₄ present		7.0-7.5(4)		
TDS	mg/l	70,000		
TSS	mg/l	<100(6) - <300 (7)		
BOD	mg/l	<100(4)		
COD	mg/l	<100(4)		
Langelier Sl(8)		<0		
Rysnar SI (8)		>6		

Notes....

- Cooling tower circulating water concentrations. PO₄ refers to total phosphate concentration. Refer to Table 3-1 and for detailed calculation pocedures.
- Without scale inhibitor.
- Assumes scale inhibitor is present.
- 4. Consult with specialty chemical provider before finalizing control parameters.
- 5. Refer to the CaSO, limit.
- 6. <100 mg/l TSS with film fill.
- <300 mg/l TSS with open fill.
- Refer to Appendix A for a discussion of the Langelier and Ryznar Saturation Indices for calcium carbonate.
- 9. <2 mg/l NH₃ applies when copper bearing alloys are present in the cooling system. This does not apply to 70-30 or 90-10 copper nickel.

Table 2-3b

Maximum Cooling Tower Calcuim with PO 4 Present

Degraded Water TC

			Max Ca, mg/l с₌соз				
		PO4 .		@ Coolin	ig Tower T	DS, mg/l	
	рН	mg/l	500	2,500	5,000	10,000	20,000
•	7.00	5	110	160	200	250	285
	7.25	5	70	100	130	165	190
	7.50	5	40	65	85	105	125
	7.00	10	70	100	125	160	180
	7.25	10	45	65	80	105	120
	7.50	10	25	40	50	65	80
	7.00	15	55	75	95	120	140
	7.25	15	35	50	60	80	90
	7.50	15	20	30	4∩	50	60

Notes.....

- Cooling tower circulating water concentrations. PO 4 refers to total phosphate concentration. Refer to Table 3-1 and for detailed calculation pocedures.
- 2. Assumes scale inhibitor is present.
- Consult with specialty chemical provider before finalizing control parameters.

Table 2-2

Degraded Water Categories

Degraded Water TC

	General Minerals (Note 3)	Biological (Note 4)	Organic Compounds (Note 5)	Metals (Note 6)	Other (Note 7)
Fresh water⊚	~		(Note 10)	(Note 10)	
Reclaimed water	~	V	(Note 10)	(Note 10)	~
Industrial process waters	~	V	· ·	~	~
Degraded water					
 Agricultural return water_® 	V		~	V	V
 Dairy or feed-lot runoff 	~	V	· /		~
 Brackish water ∅ 	~			~	~
 Contaminated groundwater 	~		~	~	~

Notes.....

1. Selenium has been identified as a heavy-metal contaminant in some agricultural tailwaters.

2. Surface or groundwater with TDS >1,500 mg/l.

3. General Minerals Na, K, Ca, Mg, HCO 3, CO3, Cl, SO ₄ and SiO2.

4. Biological BOD, COD, NH 3, PO 4, THM, etc. Typically found in reclaimed wastewater

as well as pharmaceutical, biotech, livestock/dairy and food processing

waste streams.

Organics Volatile, non-volatile or pesticide compounds
 Metals Ba, Sr, Fe, Mn, Cu, Zn, Se, As, Cr, Hg, etc.

Other NOs, POs, CIOs, S, F, etc.

- Can be surface water or groundwater. Many supplies contain trace levels of organic compounds and metals.
- Examples are produced water (oil production), micro-electonics wastewater, mine sluice water, electroplating rinse water, etc.
- Trace concentrations of organics and metals (within regulatory limits) are found in many fresh water supplies.

Cooling System Post Treatment

- Evaporation Ponds all liquid waste evaporated naturally
- Brine Concentrator and Evaporation Ponds liquid waste volume significantly reduced by an evaporator
- Brine Concentrator and Crystallizer all liquid waste evaporated to dryness

Disposal Options

- 500 MW Cogen Plant Cooling tower operated at 10 cycles of concentration

 191 gpm of cooling tower blowdown 10 gpm of miscellaneous plant wastewate 				
Central Valley	Option 1	Option 2	Option 3	
Evap Pond Area, Acres Evaporator Power, MW Crystallizer Power, MW	94 NA NA	9.4 0.98 NA	NA 0.98 0.22	
<u>Desert</u>	Option 1	Option 2	Option 3	
Evap Pond Area, Acres Evaporator Power, MW Crystallizer Power, MW	63 NA NA	6.3 0.98 NA	NA 0.98 0.22	
Disposal Option Summary Inland Plant				Pres 09 CT

- 500 MW Cogen Plant Cooling tower operated at 10 cycles of concentration 191 gpm of cooling tower blowdown 10 gpm of miscellaneous plant wastewater

Central Valley	Installed Cost, \$million Option 1 Option 2 Option 3			
Evap Pond Evaporator Crystallizer Total	\$32.9 NA <u>NA</u> \$32.9	\$3.3 \$3.4 <u>NA</u> \$6.7	NA \$3.4 <u>\$2.3</u> \$5.7	
<u>Desert</u>	Installed Cost, \$million			
	Option 1	Option 2	Option 3	
Evap Pond Evaporator Crystallizer Total	\$22.1 NA <u>NA</u> \$22.1	\$2.2 \$3.4 <u>NA</u> \$5.6	NA \$3.4 <u>\$2.3</u> \$5.7	

Disposal Cost Summary Inland Plant

Pres 10 CT